# Deuterium Quadrupole Coupling Constants and Ionic Bond Character in Transition Metal Hydride Complexes from <sup>2</sup>H NMR $T_1$ Relaxation Data in Solution

## Daniel Nietlispach, Vladimir I. Bakhmutov,\* and Heinz Berke\*

Contribution from the Anorganisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Received March 29, 1993\*

Abstract: <sup>2</sup>H  $T_1$  NMR relaxation times have been measured in solution for the D ligands of some transition metal hydride complexes and used for the calculation of deuterium quadrupole coupling constants (DQCC) and of the ionic contribution to the M-D bond. The DQCC values for the terminal hydride complexes  $WD(CO)_2(NO)(PR_3)_2$  (R = CH<sub>3</sub>, Ph), MnD(NO)<sub>2</sub>(PEt<sub>3</sub>)<sub>2</sub>, MnD(CO)<sub>3</sub>(PEt<sub>3</sub>)<sub>2</sub>, ReD<sub>2</sub>(CO)(NO)(PR<sub>3</sub>)<sub>2</sub> (R = CH<sub>3</sub>, Cy, Pr<sup>i</sup>, OPr<sup>i</sup>), cis- and trans- $ReD(CO)(PMe_3)_4, cis, mer-ReD(CO)_2(PMe_3)_3, trans, mer-ReD(CO)_3(PMe_3)_2, fac-ReD(CO)_3(PMe_3)_2, OsD_4(PTol_3)_3, trans, mer-ReD(CO)_3(PMe_3)_2, trans, mer-ReD(CO)_3(PMe_3)_3, trans, mer-ReD(CO)_3(PMe_3)_3, trans, mer-ReD(CO)_3(PMe_3)_2, trans, mer-ReD(CO)_3(PMe_3)_2, trans, mer-ReD(CO)_3(PMe_3)_2, trans, mer-ReD(CO)_3(PMe_3)_2, trans, mer-ReD(CO)_3(PMe_3)_3, tra$ RhDCl<sub>2</sub>(PPr<sup>i</sup><sub>3</sub>)<sub>2</sub>, and RhD<sub>2</sub>Cl(PPr<sup>i</sup><sub>3</sub>)<sub>2</sub> cover a range from 55 to 158 kHz. Values of 148 and  $\geq$ 120 kHz have been obtained for two nonclassical dihydrogen ligands of the complexes  $ReD(D_2)(CO)(NO)(PMe_3)_2^+$  and  $Re(D_2)(CO)$ -(PMe<sub>3</sub>)<sub>4</sub><sup>+</sup>, assuming their rapid rotation. The DQCC as well as the ionicity of the M-D bond is discussed in terms of structural parameters and substitution patterns of these complexes.

### Introduction

The deuterium quadrupole coupling constant (DQCC) is a measure for the magnitude of the electric field gradient at the deuterium site and is therefore affected by the element-D bonding mode.<sup>1</sup> Thus, it represents an important parameter for the correlation of molecular structure and properties.

In this context it seemed of major interest to use the DQCC for the structural and electronic characterization of transition metal hydride complexes. However, up to now DQCC values were determined for only four transition metal deuteride complexes containing terminal M–D bonds ( $Cp_2MoD_2$ , 52 ± 3 kHz;<sup>2a</sup>  $Cp_2WD_2$ , 54 ± 4 kHz;<sup>2a</sup> (CO)<sub>5</sub>MnD, 68.1 kHz;<sup>2b</sup> and  $Cp_2ZrD_2$ , 46.7 kHz<sup>2c</sup>) and for some bridging Cr and W hydrides.<sup>1d</sup> These constants were obtained by solid-state <sup>2</sup>H NMR spectra.

In this work we have tried to determine the DQCC by solution <sup>2</sup>H  $T_1$  NMR techniques, and we wish to report in this paper the results of <sup>2</sup>H NMR studies of some terminal W, Mn, Re, Os, and Rh hydrides and two dihydrogen rhenium complexes. Earlier the solution NMR relaxation method was successfully applied for the determination of the DQCCs in organic compounds<sup>2d</sup> and of <sup>11</sup>B quadrupole coupling constants in closo-boranes and carboranes.2e

## **Experimental Section**

All manipulations were performed under a dry nitrogen atmosphere by standard techniques. Solvents (toluene-h<sub>8</sub> and CH<sub>2</sub>Cl<sub>2</sub>) were dried and freshly distilled before use. It should be noted that the freezing points of the studied solutions were, as a rule, lower than those of the pure solvent by 10-15°.

<sup>1</sup>H, <sup>2</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR data were obtained on a Varian Gemini-300 spectrometer (300 MHz for <sup>1</sup>H nuclei). The inversion-recovery method (180- $\tau$ -90) was used to determine  $T_1$  relaxation times. The calculations of the relaxation times were performed using the nonlinear

three-parameter fitting routine of the spectrometer. The durations of the pulses were controlled at every studied temperature. The errors of such  $T_1$  determinations were lower than 5%, and hence the relaxation appeared to be monoexponential. The temperature was calibrated by <sup>1</sup>H NMR with a standard methanol sample.

The following compounds were prepared as described in the literature:  $WD(CO)_2(NO)(PR_3)_2$  (R = CH<sub>3</sub> (1), Ph (2)),<sup>3a</sup> MnD(NO)<sub>2</sub>(PEt<sub>3</sub>)<sub>2</sub>  $(3),^{4a}$  MnD(CO)<sub>3</sub>(PEt<sub>3</sub>)<sub>2</sub> (4),<sup>4a</sup> ReD<sub>2</sub>(CO)(NO)(PR<sub>3</sub>)<sub>2</sub> (R = OPr<sup>i</sup> (5), CH<sub>3</sub>(6), Cy (7), Pr<sup>i</sup>(8))<sup>3b</sup> cis-ReD(CO)(PMe<sub>3</sub>)<sub>4</sub>(9),<sup>4a</sup> trans-ReD(CO)-(PMe<sub>3</sub>)<sub>4</sub>(10),<sup>4a</sup> cis,mer-ReD(CO)<sub>2</sub>(PMe<sub>3</sub>)<sub>3</sub>(11),<sup>4a</sup> trans,mer-ReD(CO)<sub>3</sub>- $(PMe_3)_2$  (12),<sup>4a</sup> and fac-ReD(CO)<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub> (13).<sup>4a</sup> The complexes  $ReD_2(CO)(NO)(PR_3)_2$  were prepared from the corresponding  $ReH_2$ complexes (dissolved in toluene- $h_8$ ) by H/D exchange with CD<sub>3</sub>OD at 50 °C as described in an earlier paper.<sup>3a</sup> The H/D exchanges were monitored by <sup>1</sup>H NMR, and after completion the solvent mixtures were evaporated in vacuo. The complexes  $[ReD(D_2)(CO)(NO)]$ - $(PMe_3)_2^+$ ][CF<sub>3</sub>COO<sup>-</sup>] (18), [Re(D<sub>2</sub>)(CO)(PMe\_3)\_4^+][CF<sub>3</sub>COO<sup>-</sup>] (19), and  $[ReD_2(CO)(PMe_3)_4^+][CF_3COO^-]$  (14) were obtained in situ by the protonation of the corresponding mono- and dihydrides with  $CF_3COOD^{4b}$ in NMR tubes. All NMR parameters of 1-14 and 18, 19 are consistent with those reported earlier.3,4

#### **Results and Discussion**

 $T_1$  relaxations of <sup>2</sup>H nuclei are completely dominated by quadrupole interactions.<sup>5a</sup> Quadrupole relaxation rates  $(1/T_1)$ are given by eq 1

$$1/T_{1} = {}^{3}/{}_{50}\pi^{2} \frac{2I+3}{I^{2}(2I-1)} (e^{2}q_{zz}Q/h)^{2} (1+\eta^{2}/3)(\tau_{c}/(1+\tau_{c}^{2}\omega^{2}) + 4\tau_{c}/(1+4\tau_{c}^{2}\omega^{2}))$$
(1)  
$$\tau_{c} = \tau_{o} \exp(E_{act}/RT)$$

where  $\omega$  is the Larmor frequency, I is the nuclear spin,  $e^2q_{zz}Q/h$ is the static quadrupole coupling constant,  $\eta$  represents the

© 1993 American Chemical Society

<sup>•</sup> Abstract published in Advance ACS Abstracts, August 15, 1993.

<sup>(1) (</sup>a) Dixon, M.; Overill, R. E.; Platt, E. J. Mol. Struct. 1978, 48, 115. (b) Soda, G.; Chiba, T. J. Chem. Phys. 1969, 50, 439. (c) Butler, L. G.; Brown, T. L. J. Am. Chem. Soc. 1981, 103, 6541. (d) Kim, A. J.; Fronczek F. R.; Butler, L. G.; Chen, S.; Keiter, E. A. J. Am. Chem. Soc. 1991, 113, 9090

 <sup>(2) (</sup>a) Wei, I. Y.; Fung, B. M. J. Chem. Phys. 1971, 55, 1486. (b) Ireland,
 P. S.; Olson, L. W.; Brown, T. L. J. Am. Chem. Soc. 1975, 97, 3548. (c)
 Jarrett, W. L.; Farlee, R. D.; Butler, L. G. Inorg. Chem. 1987, 26, 1381. (d)
 Jackman, L. M.; Trewella, J. C.; Haddon, R. C. J. Am. Chem. Soc. 1980, 102, 2519. (e) Pascal, Y. L.; Convert, O. Magn. Reson. Chem. 1991, 29, 308.

<sup>(3) (</sup>a) Zeijden, A. A. H.; Sontag, C.; Bosch, H. W.; Shklover, V.; Berke, H.; Nanz, D.; von Philipsborn, W. Helv. Chim. Acta 1991, 74, 1194. (b) Hund, H. U.; Ruppli, U.; Berke, H. Helv. Chim. Acta 1993, 76, 963.

<sup>Hund, H. U.; Ruppli, U.; Berke, H. Heit. Chim. Acta 1993, 70, 863.
(4) (a) Gusev, D. G.; Nietlispach, D.; Vymenits, A. B.; Bakhmutov, V. I.;</sup> Berke, H. Inorg. Chem. 1993, 32, 3270. (b) Gusev, D. G.; Nietlispach, D.; Eremenko, I. L.; Berke, H. Inorg. Chem., in press.
(5) (a) Abragam, A. The Principles of Nuclear Magnetism; Clarendon Press: Oxford, 1961. (b) Nishida, B. C.; Vold, R. L.; Vold, R. R. J. Phys. Chem. 1986, 90, 4465. (c) Mackowiak, G. L.; Li, Y.; Jonas, J. J. Chem. Phys. 1991, 04, 230. (d) Spiece, H. W.; Schweitzer, D.; Hoesler, U. Magnetism; 1991, 94, 239. (d) Spiess, H. W.; Schweitzer, D.; Haeberlen, U. J. Magn. Reson. 1973, 9, 444.

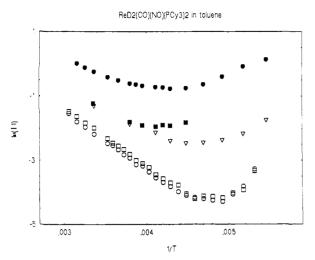



Figure 1. Variable-temperature  $T_1$  data  $(T_1 \text{ in s})$  for the toluene solution of ReD<sub>2</sub>(CO)(NO)(PCy<sub>3</sub>)<sub>2</sub> (300 MHz for <sup>1</sup>H):  $\bullet$ , <sup>31</sup>P;  $\blacksquare$ , <sup>1</sup>H–Re (trans and cis to NO);  $\nabla$ , <sup>13</sup>CH<sub>2</sub>;  $\square$ , <sup>2</sup>H–Re (trans to CO); O, <sup>2</sup>H–Re (trans to NO).

asymmetry parameter of the electric field gradient, and  $\tau_c$  corresponds to the molecular rotational correlation time.

The minimum  $T_1$  time is observed when  $\omega \tau_c = 0.62.5^a$  Thus, the  $e^2 q Q/h$  value can be calculated from eq 2

$$e^2 q Q/h \,(\text{kHz}) = 10 \left( \frac{0.6857}{46.06 \,(\text{MHz}) \, T_{1\text{min}}/\nu \,(\text{MHz})} \right)^{1/2}$$
(2)

where  $\nu$  is the frequency in MHz. Equation 2 is valid for terminal hydrides with the asymmetry parameter  $\eta$  equal to 0, as it has been shown by solid-state <sup>2</sup>H NMR experiments.<sup>2a-c</sup>

The temperature-dependent part of eq 1 is the same as that in the case of <sup>1</sup>H homonuclear dipole-dipole relaxation.<sup>6a</sup> Hence both <sup>1</sup>H and <sup>2</sup>H  $T_{1\text{min}}$  times are reached when  $\omega \tau_c = 0.62$ . Crabtree et al<sup>6b</sup> have shown that the H ligand  $T_{1\min}$  times can be detected in dilute solutions of mononuclear transition metal hydrides at low temperatures (usually from -70 to -90 °C) at 200-300 MHz. Later this was reported in many other studies.<sup>6</sup> Therefore the chance to observe the  $T_{1\min}(M-D)$  times in such solutions seems to be quite low, because of the too large frequency difference between 1H and 2H nuclei and the too small activation energies of the molecular reorientations  $(2.5-3 \text{ kcal/mol}^{4a,6})$ . However, it should be possible to reach the temperature range of  $T_{1\min}$  in viscous media, in which a significant increase of  $\tau_c$  and  $E_a$  can be expected.5b For this reason our investigations of complexes 1-14 and 18, 19 were performed in concentrated solutions of toluene or CH<sub>2</sub>Cl<sub>2</sub> (0.08-0.23 M).

Figure 1 shows the experimental temperature-dependent <sup>31</sup>P, <sup>2</sup>H-Re, <sup>1</sup>H-Re, and <sup>13</sup>CH<sub>2</sub>  $T_1$  data collected from a toluene- $h_8$ solution of complex 7.<sup>7a</sup> Since it was required to carry out the determination of the <sup>1</sup>H  $T_1$  times for the H ligands in ReH<sub>2</sub>-(CO)(NO)(PCy<sub>3</sub>)<sub>2</sub> under exactly the same conditions, the solution of 7 was evaporated in vacuo, complex 7 was dissolved in toluene $d_8$ , and the hydride ReH<sub>2</sub>(CO)(NO)(PCy<sub>3</sub>)<sub>2</sub> was added to this solution.

All curves in Figure 1 go through broad minima showing individual values and temperature positions dependent on the

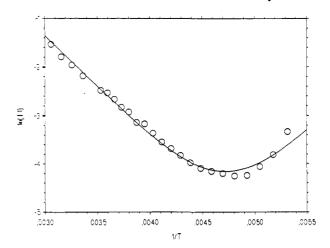



Figure 2. Variable-temperature  $T_1$  data ( $T_1$  in s) for the D ligand (trans to the NO group) of ReD<sub>2</sub>(CO)(NO)(PCy<sub>3</sub>)<sub>2</sub>.

type of observed nucleus. As mentioned above the <sup>1</sup>H and <sup>2</sup>H  $T_{1\min}$  time is reached when  $\omega \tau_c = 0.62$ . <sup>13</sup>C, <sup>1</sup>H heteronuclear dipole-dipole interactions<sup>5a,6a</sup> yield the  $\omega \tau_c$  value equal to 0.792. In accord with the Arrhenius equation  $\tau_c^{-1} = Ae^{-(E_a/RT)}$  used to describe the temperature dependence of  $\tau_c$  for molecular reorientations of 7, the linear plot of  $-\ln(\tau_c)$  vs  $T^{-1}$  leads to an energy of activation of 4.6 kcal/mol. The <sup>31</sup>P  $T_1$  data were excluded from this procedure, because of some uncertainty in the relaxation mechanisms.<sup>6f</sup>

Figure 2 displays the experimental <sup>2</sup>H  $T_1$  times for the D ligand (trans to the NO group) of complex 7 and the result of their nonlinear fittings to eq 1, respectively. If all temperature points are used, the theoretical and experimental data in the  $T_{1 \min}$  range and in the low-temperature section of the curve do not match. In addition this treatment results in a smaller  $E_a$  value of 4.0 kcal/mol.

Equation 1 is only valid when the molecular reorientation can be characterized by a single correlation time (the case of isotropic molecular motion). It is also known that a reorientation motion of even small molecules (for example, toluene) can be anisotropic in the liquid phase.<sup>5c</sup> Thus, the observed discrepancy between theory and experiment could be caused by anisotropic motion of the dihydride 7.

A recent analysis of anisotropic effects on the <sup>1</sup>H-ligand relaxation behavior of mononuclear transition metal hydride complexes containing two to four PR<sub>3</sub> ligands has shown that the <sup>1</sup>H-M  $T_{1\min}$  values are very reliable parameters for the determination of the force constants of proton-metal dipole-dipole interactions (the M-H distances). In addition the  $T_{1\min}$  values of such compounds were quite insensitive to those types of reorientational molecular motions.<sup>4a</sup>

In this work we observe the minimum relaxation time for the <sup>1</sup>H ligands in H<sub>2</sub>Re(CO)(NO)(PCy<sub>3</sub>)<sub>2</sub> at -30 °C (Figure 1). This is 40 °C higher than that in earlier work,<sup>4a</sup> where H<sub>2</sub>Re-(CO)(NO)(PCy<sub>3</sub>)<sub>2</sub> has been investigated in dilute toluene-*d*<sub>8</sub> solution. However, in full accordance with the above-mentioned conclusion, the  $T_{1min}$  value remains the same (144 ms at 300 MHz). Thus, we believe that the <sup>2</sup>H  $T_{1min}$  parameter can be used equally well to calculate the quadrupole constants (DQCC) from eq 2. Very similar values were obtained for the D-Re  $T_{1min}$  times in concentrated toluene-*h*<sub>8</sub> and CH<sub>2</sub>Cl<sub>2</sub> solutions of complex 7:  $T_{1min} = 14.2$  ms (D trans to NO) and  $T_{1min} = 15.4$  ms (D trans to NO) and  $T_{1min} = 14.7$  ms (D trans to CO) in CH<sub>2</sub>Cl<sub>2</sub> at -90 °C. The latter also supports the reliability of the <sup>2</sup>H  $T_{1min}$  parameter.

Figure 3 shows the <sup>2</sup>H  $T_1$  data collected from the same toluene solution for the D ligand of complex 7 and for the aromatic deuterons of the toluene rings (at natural abundance). In addition the  $T_1$  times of the aromatic deuterons of pure toluene at 46.06 (this work) and at 37.2 MHz<sup>5d</sup> are given.

<sup>(6) (</sup>a) Desrosiens, P. L.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 4173. (b) Hamilton, D. G.; Crabtree, R. H. J. Am. Chem. Soc. 1988, 110, 4126. (c) Farrar, T. C.; Quinting, G. R. J. Phys. Chem. 1986, 90, 2834. (d) Bautista, M. T.; Earl, K. A.; Maltby, P. A.; Morris, R. H.; Schweitzer, C. T.; Sella, A. J. Am. Chem. Soc. 1988, 110, 7031. (f) Beringhelli, T.; D'Alfonso, G.; Freri, M.; Minoja, A. P. Inorg. Chem. 1992, 31, 848.

<sup>(7) (</sup>a) The temperature behavior of the  $T_1$  times was the same for all CH<sub>2</sub> groups of 7. Figure 1 shows one of them. (b) The  $T_1$  time in eq 1 depends on the asymmetry parameter  $\eta$ . For the Rb-(D<sub>2</sub>)<sup>+</sup> model the  $\eta$  value was calculated as 0.62.<sup>12</sup> In such a case the estimation of the DQCC for the (D<sub>2</sub>) ligand of 18 yields 139 kHz.

**Table I.** DQCC Values, Effective Charges on the Metal (K(M)), an Ionicities of the M-D Bonds (*i*) for the Transition Metal Hydride Complexes Determined from the <sup>2</sup>H  $T_{1\min}$  Measurements in Toluene- $h_8$  Solution

| compound                                                                                   | $T_{1\min}$ , ms (T, °C)  | $e^2 q Q/h$ , KHz  | <i>г</i> <sub>М-Н</sub> , Å | <i>K</i> (M), e | i    |
|--------------------------------------------------------------------------------------------|---------------------------|--------------------|-----------------------------|-----------------|------|
| $WD(CO)_2(NO)(PMe_3)_2(1)$                                                                 | 22.7 (-95)                | $55.0 \pm 0.6$     | 1.732*                      | +1.1            | 0.76 |
| $WD(CO)_2(NO)(PPh_3)_2(2)$                                                                 | 22.5 (-70)                | $55.2 \pm 0.6$     | 1.732                       | +1.1            | 0.76 |
| $MnD(NO)_2(PEt_3)_2(3)$                                                                    | 21.5 (-87)                | $56.4 \pm 0.6$     | 1.59                        | +0.91           | 0.75 |
| $MnD(CO)_{3}(PEt_{3})_{2}(4)$                                                              | 15.4 (-90)                | 66.7 ± 1.0         | 1.62                        | +1.1            | 0.71 |
| $\operatorname{ReD}_2(\operatorname{CO})(\operatorname{NO})(\operatorname{POPr}^i_3)_2(5)$ | 14.5 (-80) <sup>a</sup>   | 68.8 ± 1.0         | 1.71                        | +1.4            | 0.70 |
|                                                                                            | 15.6 (-80)                | $66.3 \pm 1.0$     | 1.71                        | +1.3            | 0.71 |
| $ReD_2(CO)(NO)(PMe_3)_2$ (6)                                                               | 14.0 (-100) <sup>a</sup>  | $70.0 \pm 1.0$     | 1.72                        | +1.4            | 0.69 |
|                                                                                            | 16.1 (-100)               | $65.3 \pm 1.0$     | 1.75                        | +1.4            | 0.71 |
| $ReD_2(CO)(NO)(PCy_3)_2$ (7)                                                               | $14.2(-70)^{a}$           | 69.5 ± 1.0         | 1.71                        | +1.4            | 0.69 |
|                                                                                            | 15.4 (-70)                | $66.7 \pm 1.0$     | 1.74                        | +1.4            | 0.71 |
| $ReD_2(CO)(NO)(PPr^{i_3})_2$ (8)                                                           | 13.1 (–87) <sup>a</sup>   | $71.0 \pm 1.0$     |                             |                 | 0.69 |
|                                                                                            | 14.5 (-87)                | $68.8 \pm 1.0$     |                             |                 | 0.70 |
| $cis-ReD(CO)(PMe_3)_4$ (9)                                                                 | 12.4 (-110) <sup>b</sup>  | $74.4 \pm 1.0$     | 1.69⁄                       | +1.4            | 0.67 |
| trans-ReD(CO)(PMe <sub>3</sub> ) <sub>4</sub> (10)                                         | 15.3 (-110) <sup>b</sup>  | $66.8 \pm 1.0$     | 1.77                        | +1.5            | 0.71 |
| $cis,mer-ReD(CO)_2(PMe_3)_3$ (11)                                                          | 17.0 (-87)                | $63.5 \pm 1.0$     |                             |                 | 0.72 |
| trans, mer-ReD(CO) <sub>3</sub> (PMe <sub>3</sub> ) <sub>2</sub> (12)                      | 16.4 (-95)                | $64.7 \pm 1.0$     |                             |                 | 0.71 |
| fac-ReD(CO) <sub>3</sub> (PMe <sub>3</sub> ) <sub>2</sub> (13)                             | 15.7 (-90)                | $66.1 \pm 1.0$     |                             |                 | 0.71 |
| $ReD_2(CO)(PMe_3)_4$ (14)                                                                  | 12.2 (-115)               | $74.9 \pm 1.0$     |                             |                 | 0.67 |
| $OsD_4(PTol_3)_3$ (15)                                                                     |                           | $91.0 \pm 1.8^{c}$ | 1.659e                      | +1.7            | 0.60 |
| $RhDCl_2(PPr_{i_3})_2$ (16)                                                                |                           | $136 \pm 5^{d}$    | 1.438                       | +1.5            | 0.40 |
| $RhD_2Cl(PPr^{i_3})_2$ (17)                                                                |                           | $158 \pm 6^{d}$    | 1.40 <sup>g</sup>           | +1.6            | 0.30 |
| $ReD(D_2)(CO)(NO)(PMe_3)_2^+$ (18)                                                         | 13.1 (-115)               | 74.0               |                             |                 |      |
|                                                                                            | 12.5 (calc)               | $148 \pm 5$        |                             |                 |      |
| $Re(D_2)(CO)(PMe_3)_4^+$ (19)                                                              | ≤19.0 (−110) <sup>b</sup> | ≥61                |                             |                 |      |
|                                                                                            |                           | ≥120               |                             |                 |      |

<sup>a</sup> trans to the NO group. <sup>b</sup> In CH<sub>2</sub>Cl<sub>2</sub>. <sup>c</sup> Calculated from the  $T_{1\min}$  value taken from ref 6a. <sup>d</sup> From the <sup>2</sup>H, <sup>1</sup>H  $T_1$  data.<sup>8</sup> Neutron diffraction data.<sup>9</sup> Calculated in ref 4a from the <sup>1</sup>H  $T_1$  data.<sup>8</sup> Neutron diffraction and three-dimensional single-crystal X-ray analysis of 16<sup>9a</sup> and RhH<sub>2</sub>Cl(PBu<sup>i</sup><sub>3</sub>)<sub>2</sub>.<sup>10</sup>

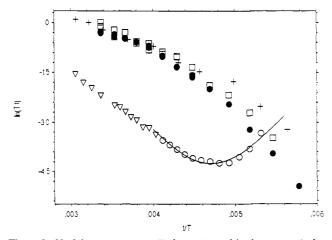



Figure 3. Variable-temperature  $T_1$  data collected in the same solution for the D ligand (trans to the NO group) of ReD<sub>2</sub>(CO)(NO)(PCy<sub>3</sub>)<sub>2</sub> and for the C<sub>6</sub>D<sub>5</sub> deuterons of toluene- $h_8$  (at natural abundance): •, C<sub>6</sub>D<sub>5</sub>; O and  $\nabla$ , D-Re. The  $T_1$  times of the C<sub>6</sub>D<sub>5</sub> ring of the pure toluene are represented by  $\square$  at 46.06 MHz and by + at 37.2 MHz.

The following main features are essential to Figure 3: (i) at temperatures above 240 K the  $T_1$  times of pure toluene and toluene solution are very similar, (ii) below this temperature the  $T_1$  times of pure toluene are markedly longer, (iii) below 240 K the relaxation rates of pure toluene are dependent on the Larmor frequency, (iv) below 250 K the Re–D  $T_1$  times show a good fit with eq 1. This fitting leads to an  $E_a$  value of 4.8 kcal/mol, which was found above by applying the <sup>1</sup>H, <sup>2</sup>H, and <sup>13</sup>C  $T_{1min}$  approach; the points between -20 and +50 °C form approximately a straight line with a smaller slope ( $E_a = 3.5$  kcal/mol). It should be noted that the latter was observed for all toluene solutions of the investigated complexes.

As denoted in (iii), the relaxation rates of the aromatic deuterons of pure toluene are different at 46.06 and 37.2 MHz below 240 K. A similar frequency dependence of the <sup>2</sup>H  $T_1$  times has already been observed for small molecules (CD<sub>2</sub>Cl<sub>2</sub>, CD<sub>3</sub>CN) at low temperatures in a viscous liquid phase with  $\eta$  between 22 and 316 c. It has been attributed to the appearance of locally ordered domains and slowly relaxing local structures.<sup>5b</sup> For the interpretation of the NMR relaxation behavior of a solute in solution, different physical models are generally applied. However all of them imply solute/solvent interactions and use relative solute/ solvent size parameters.<sup>5b</sup> Following this logic, a "sticking" between molecules like that for complex 7 and toluene at low temperatures would result in an increase of the effective rotation correlation time  $\tau_c$  and of the effective  $E_a$  value, respectively (see (iv)). It is obvious that such a phenomenon strongly complicates any calculation of the real correlation times from  $T_1$  data (like in the case of anisotropic motions). However these effects seem to be insignificant when the quadrupole coupling constant is deduced from  $T_{1\min}$  values according to eq 2. The small difference of the DQCC values found for substitutionally related Mn complexes in solution (MnD(CO)<sub>3</sub>(PEt<sub>3</sub>)<sub>2</sub>, 66.7 kHz) and in the solid state (MnD(CO)<sub>5</sub>, 68.1 kHz<sup>2b</sup>) can be considered as a support of the  $T_{1\min}$  approach.

Table I lists the DQCC values of deuteride ligands determined by  $T_{1\min}$  measurements in this work or calculated from literature <sup>2</sup>H  $T_1$  data<sup>6a,8</sup> for transition metal hydrides containing phosphorus donors. The r(M-H) distances in Table I have been taken from neutron diffraction,<sup>9</sup> <sup>1</sup>H  $T_1$  NMR,<sup>4a</sup> or three-dimensional X-ray<sup>10</sup> experiments.

Protonation of 6 and 9 with  $CF_3COOD^{4b}$  results in the formation of nonclassical dihydrogen complexes 18 and 19,

(10) Yoshida, T.; Otsuka, S.; Matsumoto, M.; Nakatsu, K. Inorg. Chim. Acta 1978, 29, L257.

<sup>(8) (</sup>a) Gusev, D. G.; Bakhmutov, V. I.; Grushin, V. V.; Vol'pin, M. E. Inorg. Chim. Acta 1990, 175, 19. (b) For complexes 16 and 17 the variabletemperature <sup>1</sup>H  $T_1$  data and the <sup>2</sup>H  $T_1$  times at 260 K have been obtained in.<sup>8a</sup> According to the eq  $1/T_1(H\cdots H) = 1/T_1(dihydride) - 1/T_1-$ (monohydride), in this work the H,H dipole-dipole contributions to the  $T_1$ times of the H ligands of 17 have been isolated at different temperatures and treated in terms of <sup>1</sup>H homonuclear dipole-dipole relaxation<sup>5a</sup> by the corresponding fitting procedure. For the H ligands of 17 this treatment leads to the  $r(H\cdots H)$  value equal to 1.685 Å, in good agreement with the threedimensional single-crystal X-ray data ( $1.8 \pm 0.1$  Å).<sup>10</sup> The fitting-procedure parameters ( $E_a = 3.1$  kcal/mol,  $\tau_o = 10^{-13}$  s) were used for 16 and 17 to calculate the  $\tau_c$  values at 260 K and the DQCC values in Table 1, respectively. It should be noted that the same approach applying an  $r(H\cdots H)$  distance of 1.8 Å<sup>10</sup> gives DQCC values of 112 and 130 kHz for 16 and 17, respectively.

A<sup>10</sup> gives DQCC values of 112 and 130 kHz for 16 and 17, respectively. (9) (a) Schwerdtfeger, C. Ph.D. Thesis. University of Southern California, Los Angeles, CA, 1987. (b) McLean, M. R.; Stevens, R. C.; Bau, R.; Koetzle, T. F. Inorg. Chim. Acta 1989, 166, 173. (c) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1.

respectively. The DQCC values for the  $(D_2)$  ligands are listed in Table I. The <sup>2</sup>H NMR spectra of 18 display an averaged signal of terminal D and  $(D_2)$  ligands due to a very fast positional exchange.<sup>4b</sup> The DQCC value for the  $(D_2)$  ligand of 18 (74 kHz at  $T_{1\min} = 12.5$  ms in Table I) can be calculated by taking this exchange into account and by use of the corresponding averaged value of  $T_{1\min}$  for the classical D ligands of 6.

The values obtained (74 and  $\geq 61$  kHz for 18 and 19. respectively) differ strongly from 124 kHz found in the solidstate <sup>2</sup>H NMR spectra of Kubas's dihydrogen complex<sup>11</sup> and from 155 kHz calculated for the Rb- $(D_2)^+$  model with r(Rb- $(D_2)$  = 1.75 Å.<sup>12</sup> However, this disaccord can be reconciled if the (D<sub>2</sub>) ligands of 18 and 19 are viewed as rapidly spinning structural units ((H<sub>2</sub>) rotation is well-known for such complexes<sup>13a</sup>). In this context a fourfold difference between the observed and real  $T_{1\min}$  times is expected, <sup>13b</sup> which leads to DQCC values of 148<sup>7b</sup> and  $\geq$ 120 kHz for 18 and 19, respectively.

Thus, these data can be envisaged as independent evidence for the spinning nature of the  $(D_2)$  ligand. However they show that a dideuterium ligand  $(D_2)$  cannot unambiguously be distinguished from a dideuteride structural unit (D)<sub>2</sub> by an <sup>2</sup>H  $T_{1min}$  criterion.

The smallest known DQCC value of 33 kHz has been found for LiD.<sup>14</sup> The results in Table I show that among classical terminal transition metal deuterides the DQCC can vary from 55 to 158 kHz.

The DOCC may be used to characterize such molecules. The magnitude of the electric field gradient  $(eq_{zz})$  on the deuterium site consists of a sum of nuclear and electronic terms.<sup>1d</sup> The latter is expressed as an expectation value of the electronic wave function  $\psi$  in eq 3

$$eq_{zz} = +\sum_{n} K_{n} \frac{3z_{n}^{2} - r_{n}^{2}}{r_{n}^{5}} - e\left(\psi^{*} / \sum_{i} \frac{3z_{i}^{2} - r_{i}^{2}}{r_{i}^{5}} / \psi\right) \quad (3)$$

where e is the electronic charge, n is the index over the other nuclei with the charge  $K_n$ , and *i* the index over the electrons. In order to represent the combined nuclear and electronic contributions from neighboring atoms, a point charge model can be used,<sup>1d</sup> which yields eq 4 in the case of the terminal M-H bond

$$e^2 q Q/h = 2(e^2 Q/h) K(M) r^{-3}$$
 (4)

where r is the M-H bond length and K(M) is an effective charge on the metal center. According to eq 4 the latter can be calculated if the M-H bond length and the sign of the DQCC are known. Assuming a positive sign for DQCC,<sup>1a</sup> the effective charge on the metal center was found to be between +1.1e (WD(CO)<sub>2</sub>(NO)- $(PMe_3)_2$ ) and +1.7e  $(OsD_4(PTol_3)_3)$  (see Table I). However the chemical meaning of this charge parameter is unclear. A rough tendency to go along with the oxidation state of the transition metal center may be derived, but there is no recognizable analytical relationship.

According to eq 4 the DQCC is strongly affected by the M-H bond length. Actually in this work the largest values of DQCC (136, 158 kHz)<sup>8b</sup> are found for the Rh hydrides with extremely short metal hydride distances.9a,b On the other hand, in deuterides of the alkali metals the DQCC value changes moderately (33-19.74 kHz<sup>12</sup>) in spite of a strong difference in the M-H distance (from 1.595 Å in LiD to 2.494 Å in CsD). As in the case of the point charge model, there is no obvious correlation of DQCCs with bond distances.

Following selected centers in a row of the PSE, a more drastic change of the DQCC is observed, for example on going from Rb

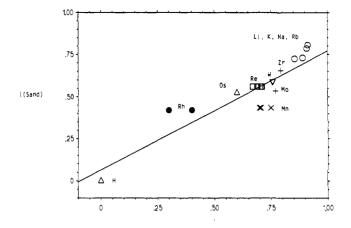



Figure 4. Plot of the ionic character of the M-D bonds calculated from eq 6 (i) versus the ionic character i(Sand) derived from Sanderson's electronegativities of the elements.

to Rh deuterides RbD (19.74 kHz<sup>12</sup>)  $< Cp_2ZrD_2$  (46.7 kHz<sup>2c</sup>)  $< Cp_2MoD_2(52 \text{ kHz}^{2a}) < RhD_2Cl(PPr^{i_3})_2(158 \text{ kHz})$ , suggesting a dependency on the M-H bond character. It is well-known that the quadrupole constants of <sup>35</sup>Cl nuclei derived from NOR measurements are affected by the ionic character of the elementchlorine bond.<sup>15</sup> The latter can be estimated from eq 5

$$(e^2 q Q/h(X-Cl)) = (1-S)(1-i)(e^2 q Q/h(Cl_2))$$
(5)

relating the quadrupole constants of the Cl nuclei with the s orbital contribution (1 - S) and the ionic character (i) of X-Cl bonds (it should be noted that eq 5 is a simplified interpretation of eq 3).

As mentioned already among metal deuterides, the smallest experimental DQCC value of 33 kHz is known for the LiD molecule,<sup>14</sup> getting close to the ionic limit of a M-D bond with a zero DQCC value. Theoretical calculations of DQCC for the other alkali metal hydrides led to values of 19.7-24.8 kHz.12 On the other hand a DQCC value of 227 kHz has been measured for the HD molecule,<sup>15b</sup> representing the pure covalent end of the scale. A hydrogen atom is connected to other partner atoms by an s orbital only, and therefore eq 5 simplifies into eq 6.

$$i = 1 - DQCC/227$$
 (6)

The DQCC (Table I and data obtained earlier from solid-state <sup>2</sup>H NMR) can directly provide chemically valuable information on the ionicity of the M-D bond in metal hydrides. Figure 4 shows the plot of the ionic character of the M-D bonds calculated from eq 6 (i) versus the ionic character i(Sand) found from corresponding Sanderson's electronegativities of the elements.<sup>16</sup> The relatively good agreement was quite surprising and seemed to give support to our approach. However it should be pointed out that the electronegativities of the metals depend on their ligand sphere and this may be the reason why significant deviations from a linear relationship are observed in Figure 4.

The M-H bond polarities of compounds 1-17 span a wide range covering prevailing ionicity in WD(CO)<sub>2</sub>(NO)L<sub>2</sub> systems (L = phosphorus donor) to predominant covalency in RhD<sub>2</sub>Cl- $(PPr_{3})_{2}$ , which is in the latter case due to a very short Rh-D bond. Since the sign of DQCC cannot be determined from the  $T_{1\min}$  measurements, we follow conclusions<sup>17,18</sup> derived earlier

<sup>(11)</sup> Kubas, G. J.; Unkefer, C. L.; Swanson, B. I.; Fukushima, E. J. Am.

Chem. Soc. 1986, 108, 7000.
 (12) Guo, K.; Jarrett, W. L.; Butler, L. G.; Inorg. Chem. 1987, 26, 3001.
 (13) (a) Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155. (b) Woessner, D. E. J. Chem. Phys. 1962, 35, 1.
 (14) Wharton, L.; Gold, L. P.; Klemperer, W. J. Chem. Phys. 1962, 37,

<sup>2149.</sup> 

<sup>(15) (</sup>a) Ramakrishan, L.; Soundararajan, S.; Sastry, V. S. S.; Ramakishna, J. Coord. Chem. Rev. 1977, 22, 123. (b) Smith, J. A. S. J. Chem. Educ. 1971, 48, 39.

<sup>(16)</sup> Huheey, J. E. Inorganic Chemistry. Principles of Structure and Reactivity, 2nd ed.; Harper & Row Publishers: New York, Hagerstown, San

 <sup>(17) (</sup>a) Sweany, R. L.; Owens, J. W. J. Organomet. Chem. 1983, 255, 327.
 (b) Chen, H. W.; Jolly, W. L.; Kopf, J.; Lee, T. H. J. Am. Chem. Soc.
 1979, 101, 2607.
 (c) Richmond, T. G.; Basolo, F.; Shriver, D. F. Organometallics 1982, 1, 1624.

#### Transition Metal Hydride Complexes

that all transition metal hydride complexes should display "hydridicity" in their bond polarizations. This was demonstrated to be the case even for such  $L_nM-H$  species which are capable of dissociating protons in polar solvents.

The strong polarities of the tungsten and manganese deuterium bonds in 1, 2, and 3, which are approaching the up to now limiting case of hydridicity in transition metal hydride bond in Cp<sub>2</sub>ZrD<sub>2</sub><sup>2c</sup> (i = 0.79), are reflected in their high propensity to undergo hydride-transfer reactions.<sup>19,20</sup> In addition it should be mentioned that the polar bond characters in 1 and 2 obviously give rise to intensive  $\nu(W-H)$  IR absorptions.<sup>3a</sup> The enhanced ionic contribution to the M-H bond in 1, 2, and 3 may at least partly be attributed to the electronic effect of a nitrosyl ligand. From UPS measurements on cyclopentadienylnitrosyltungsten complexes, it is known that the nitrosyl moiety tends to put transition metal centers at lower first ionization potentials,<sup>21</sup> which consequently induce hydridicity in H or D substituents, respectively.

Table I shows a remarkable sensitivity of the DOCC and the M-D bond polarity to the trans influence of ligands in the Re complexes 5-8 and 10-13. A difference in DQCC of the two

(18) Antovic, D.; Davidson, E. R. J. Am. Chem. Soc. 1987, 109, 977 and references therein.

(19) (a) Van der Zeijden, A. A. H.; Bosch, H. W.; Berke, H. Organo-metallics 1992, 11, 2051. (b) Van der Zeijden, A. A. H.; Veghini, D.; Berke, H. Inorg. Chem. 1992, 31, 5106. (c) Van der Zeijden, A. A. H.; Berke, H. Helv. Chim. Acta 1992, 75, 513

 (20) Nietlispach, D. Ph.D. Thesis. University of Zurich, 1993.
 (21) Bursten, B. E.; Gatter, M. G. J. Am. Chem. Soc. 1984, 106, 2554. Lichtenberger, D. L.; Hubbard, J. L. Inorg. Chem. 1985, 24, 3835. Pearson, R. G. Chem. Rev. 1985, 85, 41.

deuterium ligands in complexes 5-8 (2.5-4.7 kHz) is paralleled by their chemical nonequivalency probably due to the different trans influence of the NO and CO group. The effect of a trans influence can also be seen from the difference in DQCC and bond ionicity of 9 and 10, in which a PMe<sub>3</sub> or a CO ligand are located trans to the deuterium atom. Futhermore DQCCs of D ligands in Re complexes which are located trans to a CO group (5-8 and 10-13) fall into a quite narrow range between 63.5 and 68.8 kHz. However, it is obvious that these conclusions need to be supported in the future because of the limited set of the compounds in Table I.

# Conclusion

This work shows that solution <sup>2</sup>H  $T_1$  NMR measurements are well suited for the determination of the static DQCC in terminal transition metal deuteride complexes.

The DQCC values for a series of classical terminal W, Mn, Re, Os, and Rh deuterides were found to vary from 55 to 158 kHz. The largest constants are observed in Rh deuterides with extremely short M-H bond lengths. Values of 148 and 120 kHz are obtained for the dideuterium ligands of two nonclassical Re deuterides. The DQCC values of terminal deuteride complexes reflect the ionic M-D bond character. Thus, this study provides evidence for the use of DQCCs as important parameters of transition metal hydride systems.

Acknowledgment. We thank the Swiss National Science Foundation for financial support.